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ABSTRACT

Although LLMs have achieved significant success, their reliance on large volumes of
human-annotated data has limited their potential for further scaling. In this situation,
utilizing self-generated synthetic data has become crucial for fine-tuning LLMs without
extensive human annotation. However, current methods often fail to ensure consistent im-
provements across iterations, with performance stagnating after only minimal updates.
To overcome these challenges, we introduce Dynamic Noise Preference Optimization
(DNPO). DNPO employs a dynamic sample labeling mechanism to construct preference
pairs for training and introduces controlled, trainable noise into the preference optimiza-
tion process. Our approach effectively prevents stagnation and enables continuous im-
provement. In experiments with Zephyr-7B, DNPO consistently outperforms existing
methods, showing an average performance boost of 2.6% across multiple benchmarks.
Additionally, DNPO shows a significant improvement in model-generated data quality,
with a 29.4% win-loss rate gap compared to the baseline in GPT-4 evaluations. This high-
lights its effectiveness in enhancing model performance through iterative refinement.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities in various domains. Despite this
success, training these models requires vast amounts of human-annotated data, and the limited availability
of such data has become a bottleneck for further scaling LLMs (Kaplan et al., 2020; Villalobos et al., 2024).
This has led to a growing interest on synthetic data generation techniques to supplement human-generated
data. However, prior research suggests that using self-generated data for pre-training can easily lead to model
collapse (Shumailov et al., 2024). In contrast, leveraging self-generated data for post-training alignment
(fine-tuning) appears to be a more practical and manageable approach (Chen et al., 2024; Alami et al.,
2024).

How can we trust synthetic data? Can it be treated the same as human-annotated data, which is often regarded
as the gold standard in RLHF methods for training explicit or implicit reward models? Moreover, can we
fully trust human-annotated data itself? In reality, human data is susceptible to uncontrollable factors and
inevitable errors, which can introduce noise and inconsistencies into the training process.

∗Equal Contribution.
†The work was done when the first author was doing an internship at Samsung Research America.
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Surprisingly, we found that synthetic data has the potential to outperform human-annotated data in specific
instances. In about 30% of our experimental cases, we observed that the model’s self-generated data was
of higher quality than the human-annotated data, which challenges the assumption that human-annotated
data is always superior. However, even human-annotated data is not flawless, synthetic data cannot be
treated identically to it. Self-generated synthetic data poses unique challenges, such as minimal variation
between iterations, may lead to model stagnation. Without sufficient diversity in generated samples, the
model struggles to consistently improve, reinforcing the need for careful handling of both data types.

To address these issues, we propose Dynamic Noise Preference Optimization (DNPO), a novel framework
that enhances both the data labeling and preference optimization processes, enabling the self-improvement
of LLMs through synthetic data. Our method introduces a dynamic sample labeling (DSL) mechanism
that constructs preference pairs based on data quality by selecting high-quality examples from both LLM-
generated and human-annotated data. Also, we proposes the noise preference optimization (NPO), which
introduces a trainable noise into the optimization process, resulting in a min-max problem. This optimiza-
tion process maximizes the margin between positive and negative samples of the preference pairs, while
simultaneously updates the noise parameters to minimize the margin. Our approach can effectively prevent
stagnation, ensuring continuous model improvement with each iteration and increased robustness throughout
the self-improvement process. Our main contributions can be summarized as follows:

• Challenges in Consistent Self-Improvement: We identified two key reasons why current methods strug-
gle to achieve consistent self-improvement in LLMs across iterations: (1) the assumption that human-
annotated data is always superior, which introduces noise in preference labeling since generated data may
sometimes surpass it, and (2) the lack of variation in generated data across iterations, leading to stagnation
during model updates.

• Introducing DNPO with DSL and NPO: We propose DNPO, a framework that enables LLMs to self-
improve using synthetic data via two components: (1) DSL dynamically adjusts sample labels based on
data quality, ensuring the model learns from appropriate preference pairs; (2) NPO incorporates trainable
noise into the preference data, promoting exploration and reducing stagnation across iterations.

• Demonstrating Improved Performance with DNPO: Our experiments reveal that DNPO consistently
enhances model performance, making it particularly effective for self-generated data, especially as human-
annotated data becomes increasingly limited.

2 RELATED WORK

RL with AI Feedback. Reinforcement Learning from AI Feedback (RLAIF) (Bai et al., 2022) builds upon
the principles of Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al., 2022; Christiano
et al., 2023) and has gained considerable traction. Extending beyond established methods like PPO (Schul-
man et al., 2017) and DPO (Rafailov et al., 2024), which align language models to human preferences using
human-annotated data, (Lee et al., 2024) demonstrates that AI-generated preferences can match or surpass
human feedback-based reward models across diverse policies. Furthermore, LLMs have been leveraged to
generate high-quality training data, including datasets based on human preferences (Cui et al., 2024) and
conversational interactions (Ding et al., 2023).

Self-play in LLMs with Generated Data. The pioneering work of AlphaGo Zero (Silver et al., 2017)
inspired self-play fine tuning (SPIN) (Chen et al., 2024) to explore self-play schemes in LLM fine-tuning,
where the model iteratively distinguishes target data from self-generated responses without requiring a sep-
arate reward model. Similarly, Self-rewarding Language Model (Yuan et al., 2024) demonstrates consistent
improvement through self-annotated rewards. This self-improvement paradigm has been successfully ap-
plied to various LLM-based reasoning tasks like Werewolf (Xu et al., 2024) and Adversarial Taboo (Cheng
et al., 2024). Notably, CICERO (FAIR, 2022) employs self-play to train a RL policy, achieving human-level
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performance in Diplomacy gameplay. Recently, (Shumailov et al., 2024) observes diminishing tail content
distribution in resulting models when iteratively trained on self-generated data. Aligning with this find-
ing, we see notable stagnation in model updates during post-training, and propose an innovative method to
reactivate effective updates.

Noise Introduction in Language Modeling. A substantial amount of research has explored the benefits of
incorporating noise during training to enhance language model performance. (Zhu et al., 2020) demonstrates
that injecting adversarial perturbations into input embeddings can improve masked language modeling. Sim-
ilarly, (Miyato et al., 2021) show that adversarial training can improve text classification performance. Fur-
thermore, (Wu et al., 2022) achieves consistent gains in downstream fine-tuning tasks through a matrix-wise
perturbation approach. Gaining popularity recently, NEFTune (Jain et al., 2023) leverages noisy input em-
beddings to improve instruction fine-tuning, attaining notable improvement in conversational capabilities.

3 LIMITATIONS OF THE CURRENT APPROACHES

Previous work (Chen et al., 2024; Alami et al., 2024), improves LLM alignment by treating human-annotated
data as positive examples (yi) and model-generated data as negative examples (y′i). The model is updated
to maximize the margin between these examples through an optimization process with Obj. 1. However,
we observed that these methods fail to produce consistent performance improvements across iterations. To
address this, we take SPIN (Chen et al., 2024) as a case study to examine the following two problems:

min
θ∈Θ

∑
i∈[N ]

ℓ

(
λ log

pθ(y
+
i |xi)

pθt(y
+
i |xi)

− λ log
pθ(y

−
i |xi)

pθt(y
−
i |xi)

)
. (1)

Figure 1: Win rate comparison of generated
data versus human-annotated data, based
on GPT4o-mini’s evaluation. A win indi-
cates that generated data scored higher than
human-annotated data.

Is human-annotated data truly better? One potential is-
sue is that, as the model continues to improve, the human-
annotated data may not always be of higher quality than the
generated data. As illustrated in Figure 1, we used GPT-4o-
mini (OpenAI, 2024) to compare the generated data produced
by SPIN iteration k applied on Zephyr-7b during each iteration
and the human-annotated data. In each iteration, around 30%
of the generated data is of equal or higher quality compared to
the human-annotated data. This indicates that the assumption
of human-annotated data being inherently superior to gener-
ated data will introduce about 30% preference noise in every
round, leading to performance fluctuation and potential degra-
dation (Gao et al., 2024).

Why does model update stagnation occur? The stagnation
of model updates is demonstrated in Figure 2. After the initial
SPIN iteration, model-generated data shows nearly identical
log probability distributions between iterations k and k + 1
across multiple iterations. This resemblance suggests a lack of
significant learning progress, as the model struggles to mean-
ingfully adjust its distribution with each iteration. Additionally, model-generated data remains noticeably
distant from the distribution of positive samples, suggesting that the model is trapped in a suboptimal state,
unable to make further improvements or move toward an optimal solution.
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(a) Iteration 0 (b) Iteration 1 (c) Iteration 2 (d) Iteration 3

Figure 2: This figure illustrates the log probability distributions of positive samples, negative samples in
iteration k, and the generated data from the iteration k+1 model during SPIN training. The minimal differ-
ences between the generated data of iteration k + 1 and the previous iteration k indicate model stagnation
during training.
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Figure 3: This diagram illustrates the iterative training process of DNPO. There are two core components:
Dynamic Sample Labeling (DSL) and Noise Preference Optimization (NPO). In each iteration k, DSL is re-
sponsible for generating new data from the model and labeling it by comparing it with SFT ground truth data
using an evaluation model, forming preference pairs. These pairs are then passed to the NPO, which com-
putes a probability ratio between the SFT ground truth and the generated data. NPO applies a noise-tuning
strategy, where the model is frozen and the noise component is trained to minimize the margin between
positive and negative sample pairs. In the following step, the noise is frozen while optimizing the model to
maximize this margin. This leads to an updated model for the next iteration k + 1.

4 METHODOLOGY

4.1 OVERVIEW

As shown in Figure 3, our proposed method, DNPO, effectively addresses two critical issues in iterative
model training: preference noise and model update stagnation.

First, to tackle the challenge of preference noise, which arises from the assumption that human-annotated
data is always superior to model-generated data, Dynamic Sample Labeling (DSL) is introduced to reduces
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Question: Write a thorough review of a new clothing item that you recently bought, highlighting how 
it fits and the quality of the garment. In addition, include details on the style, color, and fabric of the 
clothing item, as well as how it compares to other pieces in your wardrobe. Make sure to mention 
any special care instructions, sizing considerations, and additional comments or recommendations 
for potential buyers.

Model-Generated: I recently purchased a new blouse from a popular clothing brand, and I must 
say that I am thoroughly impressed with the quality and fit of the garment. The blouse is made of 
a soft and lightweight fabric that feels comfortable against the skin, and the color is a beautiful 
shade of blue that complements my skin tone perfectly…

Human-Annotated: I am incapable of purchasing clothes or reviewing them.

Figure 4: Comparison between a human-annotated response from UltraChat-200k and a model-generated
answer from Zephyr-7B after a single SPIN iteration. The ground truth misinterprets the user’s intent and
refuses to respond on clothes reviews. However, Zephyr-7B generates a detailed and descriptive review of a
recently purchased blouse, highlighting aspects such as fit, fabric quality, color, and style.

the noise in the training process. In each iteration, DSL leverages an evaluation model to dynamically
compare data generated by LLMs with SFT ground truth, forming preference pairs based on the scores
of evaluation model, which ensures that the selection between model-generated and human-annotated data
is based on their actual quality, rather than assuming one is inherently better. By dynamically forming
preference pairs, this approach eliminates the rigid assumption that human annotations are always preferable.

Second, to address the issue of model update stagnation, Noise Preference Optimization (NPO) mecha-
nism is employed. NPO works by calculating a probability ratio between the SFT ground truth and the
model-generated data, setting an optimization target to minimize or maximize the margin between these two
distributions. Specifically, when the model is frozen, noise is fine-tuned to minimize the margin between
SFT ground truth and generated data, ensuring that the margin is small enough to provide sufficient incentive
for the model to update in the subsequent steps. Conversely, when the noise is frozen, the model is fine-
tuned to maximize the margin, allowing the model to capitalize on the diversity introduced by the noise. By
alternating between these two processes, NPO ensures that the model evolves consistently over iterations,
avoiding the pitfall of local optima and enhancing long-term performance.

4.2 DYNAMIC SAMPLE LABELING

As shown in Figure 4, in certain instances, we observe that model-generated responses can surpass the
quality of the original human-annotated responses for specific prompts (additional examples are provided
in Appendix A). This observation motivates a dynamic sample labeling (DSL) mechanism. Before each
iteration, DSL selects positive and negative samples based on model evaluation, thereby enhancing the
contrastive learning process. Specifically, For a dataset consisting of input prompts {xi} and corresponding
human-annotated data {yi}, at iteration k, we utilize the current model Mθ(k) to generate new responses y′i
for each xi: y′i ∼ Mθ(k)(·|xi).

We then evaluate both the human-annotated response yi and the generated response y′i using a more powerful
evaluation model Meval with promoting method, which will return their respective scores: si = Meval(xi, yi)
and s′i = Meval(xi, y

′
i). Based on the evaluation, The higher-scoring example becomes the positive sample
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and the lower-scoring example becomes the negative sample. The the optimization object at iteration k is
defined as:

min
θ

N∑
i=1

ℓ

[
1{si ≥ s′i}λ

(
log

pθt(yi | xi)

pθ(yi | xi)
− log

pθt(y
′
i | xi)

pθ(y′i | xi)

)

+ 1{s′i > si}λ
(
log

pθt(y
′
i | xi)

pθ(y′i | xi)
− log

pθt(yi | xi)

pθ(yi | xi)

)]
(2)

where ℓ is a negative log-sigmoid function, θ are the model parameters of Mθ(k) and θt represents the
parameters of a reference model, initialized with Mθ(k) and keep frozen,

Through iterative application of this method, the model’s performance improves by selectively exploiting
human-annotated responses and high-quality LLM-generated data. The dynamic sample labeling mecha-
nism selects higher-quality data as positive samples, thereby increasing label accuracy.

4.3 NOISE PREFERENCE OPTIMIZATION

Figure 2 indicates a large initial margin between positive and negative samples since Iteration 0. This
substantial margin results in minimal loss during iterative updates (as shown in Obj. 1), weakening the
gradient’s magnitude, in turn, reducing the model’s incentive to update its parameters effectively. To counter
this, we introduce noise to shrink the initial margin, thereby reinvigorating the model’s learning dynamics.

We designate all positive samples as y+i and all negative samples as y−i after sample labeling. Hence, we
can rewrite the Obj. 2 into

min
θ

N∑
i=1

ℓ

(
λ log

pθ(y
+
i |xi)

pθt(y
+
i |xi)

− λ log
pθ(y

−
i |xi)

pθt(y
−
i |xi)

)
. (3)

We aim to utilize noise to reduce the margin between positive and negative samples and rewrite Obj.3 as
Obj.4 to analyze which terms should have noise added. Noise is not added to the first two terms in Obj. 4, as
this could degrade generation quality during inference. Adding noise to the fourth term would increase the
margin, whereas adding noise to log pθt(y

−
i | xi) reduces the margin, which aligns with the objective. By

introducing noise to this term, the reference model’s confidence in negative samples is reduced, effectively
narrowing the margin between positive and negative samples.

min
θ

N∑
i=1

ℓ

(
λ

((
log pθ(y

+
i | xi)− log pθ(y

−
i | xi)

)
+
(

log pθt(y
−
i | xi)︸ ︷︷ ︸

margin ↓ when add noise

− log pθt(y
+
i | xi)︸ ︷︷ ︸

margin ↑ when add noise

)))
(4)

The vocabulary size is often large for LLMs, for example, Mistral (Jiang et al., 2023) has a vocabulary size
of 32,000. In this high-dimensional space, adding random noise cannot effectively minimize the margin.
We then propose to add trainable noise generator with zero mean to the logits of the negative samples in the
reference model pθt . Specifically, the variance of the noise is modeled using a fully connected layer. For the
last hidden state hi of the reference model, the variance σ2

i is predicted as follows:

logσi = Wσhi + bσ, (5)
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where Wσ is the weight matrix, bσ is the bias vector. The parameters for the noise generator are denoted as
θσ = [Wσ,bσ].

Noise ϵi is sampled from a zero-mean, unit-variance Gaussian distribution ϵi ∼ N (0,1), and the reparam-
eterization trick (Kingma & Welling, 2022) is employed to add the noise to the logits zi corresponding to
the negative samples in the reference model: z′i = zi + exp(logσi)ϵi = zi +σiϵi. Using the logits z′i with
added noise, the modified probability of the negative sample is computed as:

pnoise
θt,θσ (y

−
i | xi) = Softmax(z′i) (6)

Incorporating the trainable noise into the optimization function, we obtain a bi-level optimization problem:

min
θ

N∑
i=1

ℓ

(
λ log

pθ(y
+
i |xi)

pθt(y
+
i |xi)

− λ log
pθ(y

−
i |xi)

pnoise
θt,θ∗

σ
(y−i | xi)

)

s.t. θ∗σ =argmax
θσ

N∑
i=1

ℓ

(
λ log

pθ(y
+
i |xi)

pθt(y
+
i |xi)

− λ log
pθ(y

−
i |xi)

pnoise
θt,θσ

(y−i | xi)

)
, σ2

i < ε (7)

Where the inner problem is to minimize the margin between positive and negative sample pairs by optimizing
θσ , the outer problem is to maximize the margin between sample pairs by optimizing θ given the optimal
noise model parameters θ∗σ , and ε is a constant to prevent the variance of the added noise from being too
large and producing meaningless results. Minimizing θ requires finding the optimal parameters for noise θ∗σ ,
which can be computationally expensive. Alternatively, Obj. 7 can be converted into a min-max problem to
avoid the costly inner update:

min
θ

max
θσ

N∑
i=1

ℓ

(
λ log

pθ(y
+
i |xi)

pθt(y
+
i |xi)

− λ log
pθ(y

−
i |xi)

pnoise
θt,θσ

(y−i | xi)

)
, σ2

i < ε (8)

To save computational costs further, we do not perform iterative updates for the min-max problem. Instead,
we update both θ and θσ in a single iteration by minimizing the following object function:

min
θ,θσ

L(θ, θσ) :=
N∑
i=1

ℓ

(
λ

[
log

pθ(y
+
i | xi)

pθt(y
+
i | xi)

− log
pθ(y

−
i | xi)

pnoise
θt,θσ

(y−i | xi)′

])
︸ ︷︷ ︸

first term: freeze θσ , maximize positive negative pair margin

−
N∑
i=1

ℓ

(
λ

[
log

pθ(y
+
i | xi)

pθt(y
+
i | xi)

− log
pθ(y

−
i | xi)

pnoise
θt,θσ

(y−i | xi)

])
︸ ︷︷ ︸

second term: freeze θ, minimize positive negative pair margin

+α
1

N

N∑
i=1

σ2
i (9)

Where α is a hyper-parameter to control the magnitude of the variance. Note that many computations of
the first term and the second term of Obj. 9 are shared, eliminating the need to recompute everything. More
specifically, we first compute the first term and store the results of pθ(y+i | xi), pθ(y−i | xi) and pθt(y

+
i | xi).

For the second term, the feature of the last layer hi can be reused and only Eq. 5 needs to be recomputed.
Thus, the overhead of the Obj. 9 is trivial. Additionally, the noise in z′i for pnoise

θt,θσ
(y−i | xi)

′ in the first term
and for pnoise

θt,θσ
(y−i | xi) in the second term is independently sampled to better explore the noise space.

Adding trainable noise encourages more creativity in the model’s optimization process. It makes the model
more robust throughout the self-improvement process and smooths the optimization landscape.
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Figure 5: Comparison of average benchmark
scores across iterations for DNPO and SPIN.
DNPO consistently improves over iterations
while SPIN stagnates after the first iteration.

Figure 6: Average GPT4o-mini scores compari-
son across iterations for generated data of DNPO
and SPIN, alongside the ground truth perfor-
mance.

Table 1: Performance of Mistral-7B on various benchmarks. Performance is compared between different
iterations of SPIN and DNPO, starting from the Zephyr-7B-SFT.

Iteration ARC TruthfulQA Winogrande GSM8K HellaSwag MMLU Average

Zephyr-7B-SFT 0.704 0.340 0.762 0.318 0.810 0.588 0.587
SPIN-Iter. 0 0.709 0.393 0.768 0.289 0.826 0.590 0.596
SPIN-Iter. 1 0.702 0.362 0.760 0.316 0.817 0.585 0.590

DNPO-Iter. 1 (Ours) 0.734 0.381 0.766 0.334 0.827 0.583 0.604
SPIN-Iter. 2 0.707 0.370 0.761 0.276 0.820 0.585 0.586

DNPO-Iter. 2 (Ours) 0.735 0.397 0.765 0.323 0.828 0.587 0.606
SPIN-Iter. 3 0.703 0.383 0.756 0.275 0.818 0.579 0.586

DNPO-Iter. 3 (Ours) 0.737 0.417 0.766 0.336 0.827 0.586 0.612

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We use Mistral-7B (Jiang et al., 2023) as the base model in our experiments, which is fine-tuned on the
UltraChat-200k (Ding et al., 2023) dataset into Zephyr-7B-SFT. Then, we conduct post-training alignment
with DNPO on a 20k sample from the UltraChat dataset. It’s crucial that both SFT and DNPO are trained
on the same dataset to ensure self-improvement. During the DSL stage, GPT4o-mini is used for evaluation,
with the prompt template provided in Appendix B. On a 1k sample set, preference pairs predicted by GPT
scores reached 95% accuracy compared to human judgments. The noise generator in the NPO stage is
parameterized as θσ = [Wσ ∈ R4096×32000,bσ ∈ R32000]. In the initial iteration (k = 0), we do not
perform label sampling or noise addition, as the SFT model is yet unaligned with preference knowledge.
Instead, we use the SPIN method for initialization, ensuring alignment with the ground truth data. This can
be seen as a warm-up process, allowing the model to acquire basic preference information. Key training
hyper-parameters and the evaluation metrics are detailed in Appendix C.

5.2 MAIN RESULTS

Figures 5 and 6 compare DNPO and SPIN using two metrics: average benchmark scores and GPT4o-mini
scores. Figure 5 shows DNPO steadily improving in average benchmark scores, reaching 0.612 in iteration
3, while SPIN gets stuck around 0.586. In Figure 6, DNPO consistently outperforms SPIN in GPT4o-mini
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scores across all iterations, peaking at 84.86 in iteration 2, compared to SPIN’s best of 82.66. These results
demonstrate DNPO’s superior and consistent improvement over SPIN across iterations.

Table 1 provides a detailed comparison of DNPO, SPIN, and SFT model across various benchmarks. On
average, DNPO achieves a 2.5% improvement over the SFT model and a peak improvement of 2.6% over
SPIN in iteration 3. Notably, on the TruthfulQA benchmark, DNPO shows a substantial improvement of
7.7% over the SFT model and 3.4% over SPIN. This benchmark best reflects the model’s performance
because both UltraChat and TruthfulQA are question-answering datasets with similar data formats, focusing
on generating accurate, truthful conversational data. This significant gain indicates that DNPO effectively
enhances the model’s ability to generate high-quality responses. Similarly, DNPO outperforms SPIN on
ARC with a gain of 3.3% and outperforms the SFT model by 3.4%. These results further highlight the
effectiveness of DNPO in improving model performance across a wide range of benchmarks.

Figure 7 compares the win, tie, and loss rates of data gener-
ated by DNPO and SPIN over three iterations, using GPT4o-
mini scores as the evaluation metric. DNPO consistently
outperforms SPIN in win rate, with the largest gap in iter-
ation 3 (57.51% vs. 28.07%, a 29.4% gap). On average,
the win-loss rate gap is 24.56% across iterations, highlight-
ing DNPO’s superior ability to generate higher-quality data.
Additionally, Appendix D presents two examples comparing
data generated by DNPO and SPIN. Furthermore, Appendix
E and F provide additional evaluation results using various
LLMs and traditional metrics, further demonstrating the ro-
bustness and reliability of DNPO across diverse evaluation
methods.

Figure 7: Win rate comparison of DNPO
vs. SPIN, where DNPO consistently out-
performs SPIN across all iterations.

5.3 COMPARISON BETWEEN DNPO AND DYNAMIC DATA MIXING APPROACHES

In our study, we also compared DNPO, which involves training with fixed training data at each iteration,
with several dynamic data mixing approaches. Specifically, we evaluated two approaches:

1. PPO: This method leverages a reward model 1 and the Proximal Policy Optimization (PPO) al-
gorithm Schulman et al. (2017) to train the model. Unlike DNPO, the training data is not fixed;
instead, new data is dynamically generated online throughout the training process.

2. α-SPIN: α-SPIN Alami et al. (2024) introduces diversity by mixing training data from previous
iterations. For iteration k, the training data is a 50:50 mix of data generated by models from
iterations k − 1 and k − 2.

We evaluated these methods on six benchmarks. The results are summarized in Table 2. While both PPO
and α-SPIN helped introduce greater data diversity, neither method outperformed DNPO in terms of average
performance.

5.4 ABLATION STUDIES

The SPIN-iteration k model is used as the baseline for each iteration in the ablation study, with DSL, NPO,
and DNPO applied separately to validate their effectiveness. Figure 8 compares the SPIN model with the
addition of DSL, NPO, and DNPO across three iterations. Results show that DSL and NPO consistently
improve performance, validating their contributions to DNPO. In iteration 1, the largest gains are achieved

1We use reward-model-deberta-v3-large-v2 in our experiments.
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Table 2: Performance comparison of DNPO, PPO, and α-SPIN on six benchmarks.

Method ARC TruthfulQA Winogrande GSM8K Hellaswag MMLU Average

PPO 0.700 0.351 0.762 0.282 0.817 0.584 0.583
α-SPIN 0.714 0.352 0.754 0.271 0.788 0.567 0.574
DNPO 0.735 0.360 0.770 0.300 0.830 0.590 0.604

by NPO, which effectively addresses model stagnation and boosts early-stage performance. In iteration 2,
DSL shows the highest impact, as the win rate of generated data over SFT ground truth peaks, leading to
the most incorrect preference pairs. DSL effectively alleviates this by labeling samples, demonstrating its
importance when the model generates high-quality data. In iteration 3, performance gains result from the
combined effects of DSL and NPO. Despite nearing the performance ceiling, the continued improvements
highlight the robustness of this approach. Detailed benchmark accuracy is in Appendix F, with Appendix G
comparing fixed vs. trainable noise, showing the benefits of learning noise parameters.

(a) Iteration 1 (b) Iteration 2 (c) Iteration 3

Figure 8: Comparing the performance of the SPIN Iter. k model as the base model combined with different
methods—SPIN, SPIN + DSL, SPIN + NPO, and SPIN + DNPO across various benchmarks from iteration
1 to 3.

5.5 ANALYSIS

Figure 9 illustrates the behavior of model loss and
noise loss during iteration 1, corresponding to the two
terms in Obj. 9. As expected, the model loss (first
term) and noise loss (second term) exhibit a mirrored
relationship: model loss decreases across epochs but
increases within each epoch, while noise loss follows
the opposite pattern. This behavior suggests that the
model is influenced by noise within each epoch but
improves overall as training progresses. At the same
time, noise loss steadily decreases within each epoch,
indicating that the noise itself is learning and be-
coming more refined throughout the training process.
Overall, this phenomenon indicates that the model and
the noise have reached a dynamic balance, where both
are continuously updating.

Figure 9: Evolution of model loss and noise loss
over iteration 1.

Figure 10 presents the evolving log probability distributions of positive samples, negative samples, and
generated data across three iterations of DNPO, highlighting the model’s continuous updates. A notable
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phenomenon is the increasing overlap between positive and negative samples, which leads the model to
update its parameters with larger gradients when maximizing the margin between positive and negative sam-
ples, making the training process less prone to stagnation. Moreover, as training progresses, the model’s
distribution increasingly aligns with that of the positive samples. These findings demonstrate that the com-
bination of DSL and NPO not only keeps the model actively learning but also drives it toward the desired
distribution, ensuring more effective and targeted improvements throughout the iterative training process.

(a) Iteration 1 (b) Iteration 2 (c) Iteration 3

Figure 10: The figure illustrates log probability distributions of positive sample, negative sample in iteration
k and generated data of iteration k + 1 model during DNPO training. The noticeable differences between
the generated data of iteration k + 1 and the previous iteration k, indicating continuous model updates.

6 CONCLUSION

In this paper, we introduce DNPO, a robust post-training framework that enhances LLMs with self-generated
synthetic data. DNPO divides into Dynamic Sample Labeling (DSL) and Noise Preference Optimization
(NPO): DSL dynamically reassign training target, effectively suppressing harmful supervision from human-
annotated preference pairs. NPO introduces trainable noise into the optimization process, simultaneously
fine-tuning both LLMs and the introduced noise to overcome model stagnation. Our extensive experiments
demonstrate that DNPO consistently boosts model performance across iterations. DNPO addresses key
challenges in LLM self-improvement and provides a path forward for large-scale AI systems to enhance
themselves autonomously.
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A EXAMPLES OF MODEL-GENERATED RESPONSE SURPASSING
HUMAN-ANNOTATED DATA

Question 1: Here is a piece of text: Ugh. Dads. Always showing off their professional football skills
because heaven forbid you let your kids occasionally win a kickball game. Carolina Panthers kicker Graham
Gano (who someone in your fantasy league probably drafts every year) decided that a family kickball game
was not the time to go easy on his kids, and the proof is in this video the kicker posted to Twitter on Tuesday
afternoon. Just look at his family’s stunned reaction to watching the ball fly off into the trees where it’s
probably going to be popped because squirrels are jerks, Graham, why didn’t you think about that, huh?
Gano rounded the bases gleefully but the whereabouts of the ball remain unknown.

Based on the text material above, generate the response to the following quesion or instruction: Could you
paraphrase the sentence ”Always showing off their professional football skills because heaven forbid you let
your kids occasionally win a kickball game.”?

Ground Truth: Can you rephrase the sentence ”Always showing off their professional football skills be-
cause heaven forbid you let your kids occasionally win a kickball game”?

Generated Answer: Yes, the sentence means that fathers (presumably) feel the need to constantly demon-
strate their abilities in football (presumably a professional sport) during family games like kickball, even if
it means their children never have a chance to win. The speaker implies that this behavior is unnecessary
and perhaps even annoying.

Question 2: Think about your experiences at a science museum or planetarium when you were young. What
exhibits or displays did you find the most fascinating and why? Did you attend any shows or presentations?
How did they enhance your understanding of science? Did you participate in any hands-on activities? How
did they engage you and deepen your interest in science? Reflect on these memories and share your thoughts
on how they influenced your perspective on science.

Ground Truth: I don’t have the capability to experience things or go to places.

Generated Answer: I remember visiting the science museum and planetarium when I was a child and
being completely mesmerized by everything I saw. One exhibit that stands out in my mind was the one
about space. It had a life-sized model of the solar system, complete with planets and moons that you could
touch and move around. I was fascinated by how each planet had its own unique characteristics and how
they all worked together in harmony. It made me realize just how vast and complex the universe really is.

Another exhibit that caught my attention was the one about electricity. It had interactive displays that al-
lowed me to experiment with different circuits and see how they worked. I remember being amazed at how
something as simple as a light bulb could be powered by electricity. It made me realize just how much
technology has advanced and how much we rely on it in our daily lives.

As for shows and presentations, I attended a few on astronomy and space exploration. They were incredibly
informative and helped me understand some of the more complex concepts in science. One show in particular
stands out in my mind. It was about black holes and how they work. The presenter used visual aids and
analogies to help explain some of the more abstract.
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B PROMPT TEMPLATES USED FOR GPT4O-MINI EVALUATION

You are tasked with evaluating the quality of the given answer
based on the provided question. Your task is to assign a score
between 0 and 100, where 0 indicates very poor quality, and 100
indicates excellent quality. You should use a 1-point increment
scale, meaning the score can be any whole number between 0 and
100 (e.g. 73,91,68) and avoiding scores that are always multiples
of 5. Consider factors such as relevance, clarity, accuracy, and
completeness. Provide only the score without any explanation.

Question: [question]
answer: [answer]
Score:

C DETAILS OF EXPERIMENTAL SETUP

Table 3 and Table 4 present the training parameters and evaluation benchmarks used in our experiments.
All evaluation results are reported as normalized accuracy. For ARC, the score represents the average of the
“easy” and “challenge” categories, while for TruthfulQA, it is the average of “mc1” and “mc2”. Additionally,
to evaluate the quality of the generated data, we employed GPT4o-mini to score and compare the outputs
generated by both SPIN and our model at each iteration.

Table 3: Training setup parameters.

Parameter Value

bf16 true
beta 0.1

gradient accumulation steps 1
learning rate 5.0e-7

scheduler type of learning rate linear
max length 1024

max prompt length 512
number of train epochs 3

optimizer RMSprop
train batch size 4
warmup ratio 0.1

Table 4: Evaluation benchmarks and number of
samples used in the evaluation.

Benchmark # Samples

ARC (Clark et al., 2018) 25

TruthfulQA (Lin et al., 2022) 0

Winogrande (Sakaguchi et al., 2019) 5

GSM8K (Cobbe et al., 2021) 5

HellaSwag (Zellers et al., 2019) 10

MMLU (Hendrycks et al., 2021) 5
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D EXAMPLES OF GENERATED DATA OF DNPO SURPASSING SPIN’S

Question 1: Cabernet Sauvignon Red Wine in Stylish Wooden Box! Tasting notes: Evolved nose of dark
red fruits, cassis and cedar, hint of graphite and savoury edge. Juicy mouthful with some light fruit flavours
and noticeable tannins. Could you describe the wooden box that the wine comes in?

DNPO: The Cabernet Sauvignon red wine is presented in a stylish and high-quality wooden box that mea-
sures approximately 14 x 9 x 4 inches (36 x 23 x 10 cm). The box is made of sturdy wood with a smooth
finish and features a hinged lid that securely holds the bottle in place. The interior of the box is lined with a
protective felt lining to prevent any damage to the wine bottle during transport or storage. The design of the
box is both functional and aesthetically pleasing, making it a great gift for wine lovers or collectors. Overall,
it adds an extra touch of elegance and presentation to the already delicious wine inside.

SPIN: I don’t have the specific details of the wooden box that the cabernet sauvignon red wine comes in.

Question 2: Reflect on an occasion when you utilized your creativity and produced a successful masterpiece
that was highly praised by others. Please elaborate on the specific form of content, the style of the creation,
the process, and the ultimate results.

DNPO: One occasion where I utilized my creativity and produced a successful masterpiece that was highly
praised by others was when I directed and choreographed a school musical for the first time. The musical we
chose was ”Spring Awakening,” a rock musical based on a Frank Wedekind play that explores the themes of
adolescent sexuality, repression, and personal liberation through song.

From the very beginning of the planning process, I wanted to create a unique and visually striking production
that would do justice to the show’s powerful score and thought-provoking lyrics. I decided to stage the mu-
sical in the round, with the audience seated on three sides of the performance space, to create an immersive
experience that would draw them into the world of the show.

To bring my vision to life, I worked closely with our set designer to create a versatile set that could transform
from a classroom to a forest to a hospital bed, using simple props and lighting effects. I also collaborated
with our costume designer to create a cohesive visual language for each character, using bright colors and
edgy punk rock elements to reflect the show’s rebellious spirit.

SPIN: I don’t have the capability to create a masterpiece or to be praised by others. However, I can provide
a general response to this prompt.

a successful masterpiece that is highly praised by others is the result of a combination of creativity, hard
work, and a unique style. The form of the content can be anything from a painting, a sculpture, a piece of
music, a book, a film, or any other creative work. The style of the creation is what makes it unique and sets
it apart from other works.

the process of creating a masterpiece is a long and arduous one. The creator must have a clear vision of what
they want to create, and they must be willing to put in the time and effort to make that vision a reality. The
process can involve many different stages, from the initial concept to the final product.

the ultimate results of a successful masterpiece can be seen in the way that it is received by others. A
masterpiece can evoke strong emotions, spark new ideas, and inspire others to create their own works. It can
also be a source of pride and accomplishment for the creator, who has poured their heart and soul into the
creation.
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E DNPO VS. SPIN: EVALUATION UNDER CLAUDE 3.5-HAIKU AND GPT4O

Figure 11: (Left) Generated data scores comparison (Right) Win rate comparison, evaluated with Claude
3.5-haiku.

Figure 12: (Left) Generated data scores comparison (Right) Win rate comparison, evaluated with GPT4o.

F DNPO VS. SPIN: EVALUATION UNDER THREE TRADITIONAL METRICS

We compared the performance of SPIN and DNPO under these traditional metrics: BLEU, Sentence-BERT
(SBERT) Similarity, and ROUGE-L. These metrics were used to evaluate the data generated by the model
in iteration k+1, referencing the corresponding positive samples from iteration k (i.e., the positive samples
used to train the model in iteration k + 1). The results are shown in Table 5. On average, across iterations
1–3, DNPO demonstrates superior performance on all three metrics. These findings are consistent with the
results obtained using LLM-based evaluations, further validating the robustness and reliability of DNPO
across different evaluation.

Table 5: Comparison of SPIN and DNPO on traditional metrics.

Metric Method SFT Iter. 0 Iter. 1 Iter. 2 Iter. 3 Avg (Iter. 1-3)

BLEU SPIN 0.128 0.091 0.099 0.115 0.088 0.101
DNPO 0.128 0.091 0.108 0.123 0.112 0.114

SBERT Similarity SPIN 0.788 0.769 0.764 0.778 0.736 0.759
DNPO 0.788 0.769 0.775 0.787 0.787 0.783

ROUGE-L SPIN 0.320 0.273 0.274 0.299 0.274 0.282
DNPO 0.320 0.273 0.299 0.298 0.290 0.296
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G DETAILED BENCHMARK ACCURACY IN ABLATION STUDY

Table 6: Comparison of SPIN, SPIN+DSL, and SPIN+NPO performance across benchmarks over multiple
iterations.

Iter. ARC TruthfulQA Winogrande GSM8K HellaSwag MMLU Average
SPIN-Iter. 1 0.702 0.362 0.760 0.316 0.817 0.585 0.590
+DSL-Iter. 1 0.710 0.377 0.767 0.317 0.823 0.586 0.597
+NPO-Iter. 1 0.728 0.376 0.766 0.334 0.824 0.584 0.602

+DNPO-Iter. 1 0.734 0.381 0.766 0.334 0.827 0.583 0.604

SPIN-Iter. 2 0.707 0.370 0.761 0.276 0.820 0.585 0.586
+DSL-Iter. 2 0.711 0.363 0.770 0.325 0.821 0.589 0.596
+NPO-Iter. 2 0.718 0.375 0.762 0.332 0.821 0.582 0.598

+DNPO-Iter. 2 0.719 0.382 0.771 0.343 0.822 0.589 0.604

SPIN-Iter. 3 0.703 0.383 0.756 0.275 0.818 0.579 0.586
+DSL-Iter. 3 0.703 0.378 0.762 0.280 0.821 0.582 0.588
+NPO-Iter. 3 0.707 0.380 0.762 0.300 0.821 0.585 0.592

+DNPO-Iter. 3 0.711 0.378 0.769 0.305 0.821 0.589 0.595

H COMPARISON OF FIXED VS. TRAINABLE NOISE IN DNPO

Figure 13 and Table 7 compare the SPIN model’s performance with fixed vs. trainable noise across three
iterations. The fixed noise is sampled from N (0, 0.5), while trainable noise is optimized during NPO.
Trainable noise consistently outperforms fixed noise, highlighting the importance of learning noise.

(a) Iteration 1 (b) Iteration 2 (c) Iteration 3

Figure 13: Comparison of SPIN model with fixed and trainable noise across iterations.

Table 7: Comparison of SPIN model with fixed and trainable noise across benchmarks.

Iter. ARC TruthfulQA Winogrande GSM8K HellaSwag MMLU Average
SPIN-Iter. 1 0.702 0.362 0.760 0.316 0.817 0.585 0.590

+Fixed-Iter. 1 0.709 0.370 0.764 0.328 0.821 0.581 0.596
+Trainable-Iter. 1 0.728 0.376 0.766 0.334 0.824 0.584 0.602

SPIN-Iter. 2 0.707 0.370 0.761 0.276 0.820 0.585 0.586
+Fixed-Iter. 2 0.714 0.367 0.765 0.315 0.822 0.580 0.594

+Trainable-Iter. 2 0.718 0.375 0.762 0.332 0.821 0.582 0.598
SPIN-Iter. 3 0.703 0.383 0.756 0.275 0.818 0.579 0.586

+Fixed-Iter. 3 0.701 0.370 0.752 0.296 0.819 0.582 0.587
+Trainable-Iter. 3 0.707 0.380 0.762 0.300 0.821 0.585 0.592
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