
Efficient Computation of Tucker Decomposition of

Correlation-Based Tensors

Bill Xu

Advisor: Grey Ballard
in collaboration with Robert Lyday, and Paul Laurienti

May 13, 2020

Abstract

The Tucker decomposition is a generalization of the matrix singular value decomposition to tensors,
which are multidimensional arrays. We seek to apply the decomposition as a dimension reduction tech-
nique in order to analyze large functional magnetic resonance imaging (f-MRI) datasets of human brains.
Neuroscientists are particularly interested in correlation among different areas in the brain, but comput-
ing and storing pairwise correlations between all pairs of brain areas can be infeasible, especially when
the data set includes multiple participants and multiple trials. The current practice is to downsample
the data in order to reduce the number of brain areas in the data, but this process loses information.
We show that the dimension reduction via Tucker decomposition can be computed without explicitly
computing and storing all correlations, making data analysis with the original granularity feasible and
efficient. We demonstrate the advantage of using the full granularity to answer scientific questions about
the data, including classifying participants across multiple trials.

1 Introduction

1.1 Background

Correlation between different areas of brains has been topic of interest in neuroscience for a long time. One
of the methods in brain imaging is Functional Magnetic Resonance Imaging (f-MRI), which measures brain
activity by detecting changes of blood flow. While scanning brains using f-MRI, the unit of measurement
for voxels is on the scale of cubic nanometers. For example, a typical available granularity is 4nm× 4nm×
4nm, which we will refer to as Voxel-based data. Because of the fine granularity, the data requires huge
space of memory to store and time to process. Alternatively, neuroscientists have manually defined 268
anatomically specific regions, each of which combines different sets of voxels to save memory at a cost of
reducing granularity. We call this coarser-grained representation Region-based data. Our research addresses
two related problems: (1) Can we improve efficiency and reduce memory usage when processing f-MRI
data? (2) What are the advantages of using Voxel-based over Region-based data in answering neuroscience
questions?

1



1.2 Preliminaries

1.2.1 Singular Vector Decomposition

The Singular Value Decomposition (SVD) is a technique for linear dimensionality reduction to project high
dimensional data to a lower dimensional space. In our research, SVD decomposes a flattened Neural Activity
Tensor into matrix multiplication of left singular vectors, singular values, and right singular vectors. In this
way we can map high dimensional f-MRI data into a low dimensional matrix of left singular vectors.

1.2.2 Machine Learning Models

We have implemented multiple machine learning models to experiment on scientific questions, including
Random Forest, Gradient Boosting Decision Trees and K-Nearest Neighbors and Generalized Linear Re-
gression. A random forest [1] is a meta estimator that fits a number of decision tree classifiers on various
sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting.
Gradient Boosting [2] builds an additive model in a forward stage-wise fashion; it allows for the optimization
of arbitrary differentiable loss functions. Both of them exploit ensemble to improve predictive accuracy and
generalizability. Gradient Boosting Decision Trees builds on weak learners (shallow trees) while Random
Forest aims at fully growing decision trees. Therefore GBDT tends to reduce bias while Random Forest
reduces variance.

2 Data

The data we use comes from f-MRI (Functional Magnetic Resonance Imaging) brain image scans. Such scans
of brain take places at certain intervals (or timesteps) for each participant. Therefore we can store the data
in a 3 dimensional tensor called Activity Tensor A. Beyond that, we need several transformation based on
A. We define a Static Correlation Tensor as S, Window Activity Tensor W, Dynamic Correlation Tensor C.
Besides P is number of participants, A is number of brain regions (areas), T is number of time points, W is
width of window, N = T −W + 1 is number of windows

2.1 Activity Tensor

In either region based or voxel based methods, the activity tensor, A of the brain data is a three way tensor
of Area (A), Time(T ) and Participant(P ). The entry aijk is a record of either regional or voxel brain data
of area i, at time j for participant j.

A

T
P

A =

For the purpose of computing correlation, we define Â from A by shifting each time series towards center
and normalizing.

Â(a, :, p) =
A(a, :, p)−A(a, :, p)

‖A(a, :, p)−A(a, :, p)‖2

2



2.2 Static Analysis Correlation Tensor

The static analysis correlation tensor S is a three way tensor (A by A by P ). Sijk is the statistical correlation
between two areas fibers Aik and Ajk over T for participant k. The statistical correlation of two vectors x
and y is defined by

corr(x,y) =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
√∑n

i=1(yi − y)2
= x̂T ŷ

where x̂ = x−x1
‖x−x1‖2 . Thus,

A

A
P

S =

where S(:, :, p) = Â(:, :, p)Â(:, :, p)T .

2.3 Dynamic Analysis Correlation Tensor

To calculate correlation between areas of a given participant at a specific time n, one should not use area
fibers over full time, A(a, :, p), to compute correlation. Instead, we propose sliding windows at time n with
size W to compute correlation.

2.3.1 Windowed Activity Tensor

The windowed activity tensor W is a four way tensor of Area (A), Time (W ), Participant (P ), and Window
(N) . Entry Wijkn is a record of either regional or voxel brain data of area i, at window time j for participant
j and window index n.

...
A

W
P

A

W︸ ︷︷ ︸
N

P
W =

Similar to its static counterpart, we define X̂ Ŵ from W by shifting and normalizing towards center.

Ŵ(a, :, p, n) =
W(a, :, p, n)−W(a, :, p, n)

‖W(a, :, p, n)−W(a, :, p, n)‖2

2.3.2 Correlation Tensor

The dynamic correlation tensor C is a four way tensor (A by A by P by N). The entry Cijpn is the statistical
correlation between two areas i and j for participant k at time n.

3



A

W

P

p

= C(:, :, n, p)A

W

Figure 1: Subtensor corresponding to correlation of participant p and window n

...
A

A
P

A

A
P

C =

︸ ︷︷ ︸
N

where C(:, :, p, n) = Ŵ(:, :, p, n)Ŵ(:, :, p, n)T , and C(i, j, p, n) is the inner product of two vectors Ŵ(i, :, p, n)

and Ŵ(j, :, p, n)

3 Algorithms

3.1 Static Analysis Correlation Tensor

In case where we view tensor S as correlation of areas for participants over all time points of A, the algorithm
is presented as Algorithm 1. Notice that certain time series vectors must be centered and normalized before
used to calculate correlation matrix.

Algorithm 1 Static Analysis Correlation Tensor

Require: A is original 3-way data tensor with dimension A× T × P
1: for p = 1:P do
2: for a = 1:A do
3: Â(a, :, p) = A(a, :, p)−A(a, :, p) . center time series vector

4: Â(a, :, p) = Â(a, :, p)/‖Â(a, :, p)‖2 . normalize time series vector
5: end for
6: S(:, :, p) = Â(:, :, p)Â(:, :, p)T . calculate correlation matrix
7: end for

3.2 Dynamic Analysis Correlation Tensor

Our primary goal is to compute the left singular vectors of C(4), the participant-mode unfolding of dynamic
correlation tensor C. Thus, an intuitive algorithm is based on our experience in the previous section:
explicitly compute windowed activity tensor W, then calculate the corresponding correlation tensor C, and
finally form the left singular vectors of C(4). This approach is presented as Algorithm 2.

4



Algorithm 2 Left Singular Vector of Dynamic Analysis Correlation Tenso r(explicit)

Require: A is original 3-way data tensor with dimension A× T × P
Require: W is the window size in windowed activity tensor
1: N = T - W + 1 . number of windows
2: for p = 1:P do
3: for n = 1:N do
4: W = A(:, n : n + W − 1, p)
5: for a = 1:A do
6: Ŵ(a, :) = W(a, :)−W(a, :) . center (windowed) time series vector
7: Ŵ(a, :) = Ŵ(a, :)/‖Ŵ(a, :)‖2 . normalize (windowed) time series vector
8: end for
9: C(:, :, n, p) = ŴŴ

T
. calculate 2D slice of dynamic correlation tensor

10: end for
11: end for
12: G = C(4)C

T
(4) . Compute Gram matrix of participant mode unfolding

13: [U,Λ] = EVD(G) . U := eigenvectors; Λ := eigenvalues
14: Sort U,Λ by descending order of Λ
15: Σ =

√
Λ . singular values of C(4), U are left singular vectors

There are two steps involved in this algorithm: (1) Computing correlation tensor C, which costs A2WPN
flops because for each of N windows, and for each of P participants, there is a need to compute a matrix
multiplication of shape A×W and its transpose, and such multiplication costs A2W flops (since the result
is symmetric). (2) Computing the SVD via and EVD of the Gram matrix to recover left singular vectors.
Since C(4) is a matrix of size P × (A×A×N), computing the Gram matrix costs A2P 2N flops.

The space complexity is attributed to (1) Activity tensor A which takes ATP unit of space. (2) Corre-
lation tensor C which takes A2NP unit of space.

Alternatively, we propose an approach that implicitly calculates the Gram matrix G, resulting in both
computational and spatial efficiency particularly when A is large. The implicit algorithm is based on following
derivation:

(C(4)C
T
(4))ij =< Mi,Mj >

=

N∑
n

< Ci
n, C

j
n >

=

N∑
n

< Ai
nA

i
n

T
, Aj

nA
j
n

T
>

=

N∑
n

< Ai
n

T
Ai

n, A
j
n

T
Aj

n >

=

N∑
n

‖Ai
n

T
Aj

n‖2F

where Ci
n = C(:, :, n, i) and Ai

n = A(:, n : n + W − 1, i).
As a result, it is possible to compute C(4)C

T
(4) without explicitly forming C(4), but through the element-

wise sum of squares of the matrix multiplication of activity window matrix for participants i and j. We

5



present the implicit approach as Algorithm 3.

Algorithm 3 Left Singular Vector of Dynamic Analysis Correlation Tensor(implicit)

Require: A is original 3-way data tensor with dimension A× T × P
Require: W is the window size in windowed activity tensor
1: N = T - W + 1 . number of windows
2: G = 0 . Initialize G to be P × P
3: for n = 1:N do
4: for i = 1:P do
5: AI = A(:, n : n + W − 1, i)
6: for a = 1:A do
7: ÂI(a, :) = AI(a, :)−AI(a, :) . center (windowed) time series vector
8: ÂI(a, :) = ÂI(a, :)/‖ÂI(a, :)‖2 . normalize (windowed) time series vector
9: end for

10: for j = 1:i do
11: AJ = A(:, n : n + W − 1, j)
12: for a = 1:A do
13: ÂJ(a, :) = AJ(a, :)−AJ(a, :) . center (windowed) time series vector
14: ÂJ(a, :) = ÂJ(a, :)/‖ÂJ(a, :)‖2 . normalize (windowed) time series vector
15: end for
16: G(i, j) += ‖ÂI

T
ÂJ‖2F . core update

17: end for
18: end for
19: end for
20: G = G + tril(G,−1)T . Copy lower triangle of G into upper triangle
21: [U,Λ] = EVD(G) . U := eigenvectors; Λ := eigenvalues
22: Sort U,Λ by descending order of Λ
23: Σ =

√
Λ . singular values of C(4), U are left singular vectors

The computational cost for the implicit algorithm is AW 2NP 2 since for each pair of P participants, and

for each of N windows, there’s a matrix multiplication of ÂI
T
ÂJ that costs 2AW 2.

The spatial cost for such implicit algorithm is always smaller than the explicit one – only activity tensor
A needs to be stored, thus a spatial complexity of ATP .

3.3 Efficiency Comparison

By the analysis in the previous section, we may compare the efficiency of two methods. The speedup for
both time and space complexity is dependent on variable values A,W,P,N and T .

For our experimental data, we have a brain dataset involving 61 participants, 147 time points and window
size of 60. Thus, the number of windows N = T −W + 1 = 88. If regional based sampling is adopted, we
have 268 units of area, while voxel based sampling contains around 20,000 units of area.

With Region-based data, the speedup of implicit method over explicit method, in terms of time, is 0.8×
which actually decreases in speed. However, the speedup increases to 61× under voxel based level.

6



i
j

n

A

T

P

Figure 2: Visualization of inner loop of Algorithm 3 (ÂI and ÂJ )

Time Complexity Space Complexity
Explicit Method A2WPN+ A2P 2N A2NP + ATP
Implicit Method AW 2NP 2 ATP

Speedup A(W+P )
W 2P

AN
T + 1

Table 1: Time and space complexity compared between explicit and implicit methods.

0 5,000 10,000 15,000 20,000
0

20

40

60

A

S
p

ee
d
u
p

0 5,000 10,000 15,000 20,000
0

0.2

0.4

0.6

0.8

1

1.2

·104

A

S
to

ra
ge

R
ed

u
ct

io
n

Figure 3: Speedup in time and storage reduction corresponding to number of areas. For the experimental
data, implicit method costs less time than explicit method as A > 327 and always requires less memory than
explicit method. The red line corresponds to value 1 to indicate when implicit method outperforms explicit
method.

7



0 500 1,000 1,500 2,000 2,500
0

2

4

6

8

10

A

S
p

ee
d

u
p

Mean Experimental Speedup
Theoretical Speedup

Figure 4: Speedup experiment on synthetic data, the speedup is roughly linear and exceeding 1 at 300 <
A < 400, a result corresponding with the theoretical analysis. The red line corresponds to value 1 to indicate
when implicit method outperforms explicit method. The shadowed area is the range of 10 experimental
speedups.

In terms of spatial complexity, the implicit method is 160.44 times more efficient for Region-based data,
and 11,972.79 times more efficient for Voxel-based data. The implicit algorithm is always better in terms of
spatial efficiency.

3.4 Experiment

Using the same values of T,W , and P as the experimental data in the previous section, we generate synthetic
data with varying values of A and record the corresponding experimental speedup. We plot the maximum,
minimum and mean values of speedups out of 10 trials below. We also tested the performance of both methods
on our machine by evaluating GFLOPS (gigaflops per second). We see that implicit method becomes faster
when A exceeds approximately 350, agreeing with the theoretical analysis. For larger A, we see that the
experimental speedup exceeds the theoretical one (based solely on flop counts). This deviation is attributed
to the difference in memory footprints; because the memory footprint of the implicit method is smaller, it
enjoys much better cache utilization than the explicit method. At A = 2,500, the memory footprint of the
explicit algorithm is 24.58 GB while the footprint of the implicit algorithm is only 16.82 MB. Because of the
memory footprint of the explicit method, we could not compute empirical speedups for larger A. However,
we have run implicit algorithm on the same synthetic data where A increases to 20000, and it only takes
18.26 seconds on a single thread of 2.6 GHz Intel Core i7.

Similarly, the implicit algorithm on our real voxel based data, where A = 18225,W = 60, T = 156, P =
183 takes 496.2MB of memory footprint and 298.8 seconds to run. It is almost impossible to store and
process such data with the explicit algorithm on a normal computer.

We present the raw GFLOPS in Figure 5. We see that both methods perform at roughly the same
efficiency for small values of A, so the speedup attained by the implicit method maps well to the theoretical
comparison of the flop count. However, for larger A, we see a deviation in the performance of explicit and
implicit methods, which helps explain why the empirical speedup is larger.

8



500 1,000 1,500 2,000 2,500

1

2

3

4

5

A

G
F

L
O

P
S

Explicit Method GFLOP
Implicit Method GFLOP

Figure 5: GFLOPS comparison of the same experiment on synthetic data

4 Voxel Based vs. Regional Based

x Given an efficient way of performing dimensionality reduction for Voxel-based data, our next question is,
is it worth replacing Region-based analysis by Voxel-based analysis? We start off comparing the singular
values and vectors resulted from the experiment above.

4.1 Singular values and vectors

Regional based activity tensor generates singular values that converge much more quickly to 0, while singular
values from voxel based data are generally higher in quantity and decrease much more smoothly.

20 40 60 80

0.2

0.4

0.6

0.8

1

·107

S
in

gu
la

r
va

lu
es

(r
eg

io
n
al

)

20 40 60 80

2

2.5

3

3.5

·109

S
in

gu
la

r
va

lu
es

(v
ox

el
)

Figure 6: Singular values computed from two techniques.

The singular vectors from regional based data seems like random numbers around 0 without special
patterns, while those from voxel based data contains several extreme values far from 0. Since x-axis corre-

9



sponds to participants P , these spikes indicates that voxel based data contains some outstanding tendency
for different participants.

20 40 60 80

−0.2

0

0.2

0.4

S
in

g
u
la

r
ve

ct
or

s
(r

eg
io

n
al

)

20 40 60 80

−0.5

0

0.5

S
in

gu
la

r
ve

ct
o
rs

(v
ox

el
)

Figure 7: Singular vectors corresponding to the 5 biggest singular values computed from two techniques.

10



Trained on Regonal Data Trained on Voxel Data
Dummy Classifer .016 .016
Random Forest .007 .289

GBDT 0.497 .836
KNN .011 .032

Table 2: Individual classification accuracy trained on regional and voxel data using Random Forest, Gradient
Boosting Decision Trees and K-Nearest Neighbors classifiers.

Trained on Regonal Data Trained on Voxel Data
Dummy Classifer .639 .639
Random Forest .622 .743

GBDT 0.852 .857
KNN .546 .595

Table 3: Farm/NonFarm Workers classification accuracy trained on regional and voxel data using Random
Forest, Gradient Boosting Decision Trees and K-Nearest Neighbors classifiers.

4.2 Individual Classification

One of the scientific questions we try to answer is classification over participants P . The data we use for
this task contains 61 participants each testing 3 tasks, thus P = 183. We label 61 individual participants
and processed the data using our implicit algorithm to get a matrix of left singular vectors with dimension
183× 183. To get fair accuracy, we use stratified 3-fold cross-validation to divide the data into 3 parts, each
with 61 distinguished labels of participants. Then we iteratively train machine learning models based on two
of three parts and use the left-out part of data to valid model accuracy. Our final accuracy is calculated as
the average of the three validation scores.

We observe higher classification accuracy for Voxel-based data in machine learning models. The most
successful model is GBDT (Gradient Boosting Decision Tree), which achieves 83.6% classification accuracy
on voxel data while only 49.7% on regional data. It is a sheer win for voxel data to classify individual
participants.

We also implemented other models such as Supporting Vector Machines [3] and Generalized Linear
Regression. However they failed to converge due to the limited number of samples within classes.

4.3 Farm/Nonfarm Worker Classification

Using the same data as the previous section, we divide the 61 participants into 22 farm workers and 39 non-
farm workers. Then we label the total 183 cases into two classes before a stratified 3 fold cross validation.
However, the result of this task fails to prove the advantage of voxel based data over regional data. The
classification accuracy for both form of data are close enough to each other.

4.4 Clustering

Besides supervised classification, we also tried to cluster one of the three tasks in an unsupervised way. After
preprocessing with implicit algorithm, we have a 61 × 61 matrix of singular vectors. KMeans clustering on
these singular vectors can separate them into two groups. Then we compare the result with Farm/Nonfarm
worker labels to compute target similarity between them. It turns out that voxel based data seems hard for

11



Figure 8: Farm/Non-farm worker classification accuracy

Kmeans to find any useful pattern. On the other side, regional data reaches its maximum as we use two
leading left singular vectors, but fails to work as the number of singular vectors increases.

5 Conclusion

So far we have developed an efficient algorithm in performing SVD on correlation activity tensors. The
speedup and storage reduction are significant both theoretically and practically. Using an efficient algo-
rithm, we have performed several experiments and found that using voxel based data answers individual
classification problem more accurately than region-based data. More experiments must be made in order to
gain comprehensive insight of the advantage of voxel data, and we believe our implicit algorithm lays a basis
for the potential research in the future.

12



References

[1] Breiman. “random forest”. Machine Learning, 2001.

[2] Jerome H Friedman. “greedy function approximation: a gradient boosting machine”. Annals of statistics,
page 1189–1232, 2001.

[3] John C. Platt. “probabilistic outputs for support vector machines and comparisons to regularized likeli-
hood methods”. 1999.

13


